Mechanisms of Evolution
Beyond Darwin and Neo-Darwinism
Biological Evolution
However, morphologic changes may reflect alterations in the regulation of genetic expression without a major alteration in genotype – witness the considerable differences that selective breeding has wrought in size and configuration within one canine species. Similarly, the paramount importance of gene regulation probably explains much of the morphological difference between humans and chimps – two species who share 98% of their DNA. Recently, researchers have demonstrated that gene regulation has enabled rapid phenotypic speciation in sticklebacks. Along the same lines of modification of genetic expression, alternative splicing enables a single gene to give rise to multiple versions of a protein.
mutation → allele → pre-mRNA → constitutive pre-mRNA splicing and/or epigenetic alternative splicing → proteins → intergenerational fate of allele
There are two basic types of mechanism involved in biological evolution. First are the genetic sources of alteration of a gene within the genotype of an individual. Second are those statistical mechanisms that determine the fate of an altered allele. These are the mechanisms that increase or decrease frequency of an allele (a form of a gene at a locus) within a population.
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli : | 2 Guide-Glossary
Beyond Darwin and Neo-Darwinism
Summary of Darwin's observations and his Theory of Evolution by Natural Selection:
1. Most animals have such high fertility rates that their population size would increase exponentially if all individuals were to reproduce.
2. Yet, except for seasonal fluctuations, populations remain relatively stable in size.
3. Because environmental resources are limited, individuals compete for resources, limiting survival and reproduction.
4. Individual characteristics vary within populations and those members of a population that are better adapted for survival in the face of competition are more likely to pass their characteristics on to the next generation.
5. Thus, species gradually accumulate inherited adaptations that best suit them for their environment, passing these on to progeny. Speciation involves gradually accumulated differentiation of characteristics.
Darwin was not aware of the existence of DNA, nor of the mechanisms that alter genotype. Darwin focussed on the inheritance of adaptive individual characteristics that had ensured reproductive success, and the resultant slow accumulation of adaptive phenotypic change. Darwin did not say that all species are gradually evolving (cf. quote.)
Subsequent evolutionary theorists first disputed Darwin's concept of gradual evolution. Gould and Eldredge introduced the concept "phyletic gradualism " which they discredited through the concept of punctuated equilibria. The Theory of Punctuated Equilibria was proposed in order to explain patchiness in the fossil record and the the localized adaptive radiation of species observed following extinction events. This stage of thinking about evolutionary mechanisms has been termed "Neo Darwinism".
Modern advances in molecular genetics, coupled with studies of population genetics have led to the "Modern Synthesis" of understanding concerning mechanisms of evolution. Current understanding incorporates knowledge of genetic drift, gene flow, mutation, recombination, and natural selection mechanisms.
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli :
Creationists and defenders of "intelligent design" theory commonly attack a "strawman" depiction of Darwinism or Neo-Darwinism as representing current thinking in their attempt to discredit evolutionary science. It is important for any person wishing to defend evolution-as-fact and modern evolutionary theories to attain a thorough understanding of modern evolutionary theory as well as fallacious creationist arguments. | 2 Guide-Glossary
Punctuated equilibria
Features of the Theory of Punctuated Equilibria:
1. Interpretation of paleontology ought to be based on the study of living or recently living organisms (neontology).
2. Large, widespread species usually change slowly, if at all, during their time of residence.
3. Sampling of the fossil record will reveal a pattern of stasis in most species, and the abrupt appearance of newly derived species is a consequence of ecological succession and dispersion.
4. Most speciation proceeds independently from a single ancestral line (cladogenesis) rather than by in toto replacement by a morphogenetically distinct population (anagenesis).
5. Adaptive change in lineages occurs mostly during periods of speciation (during cladogenesis).
6. Trends in adaptation occur mostly through the mechanism of species selection.
7. Daughter species usually develop during a time that is short in comparison to the residence time of the species (across limited strata).
8. Most speciation results from isolation of a small, reproductively isolated, geographically peripheral sub-population (parapatric or peripatric speciation, or allopatric speciation of peripheral isolates). That is, daughter species usually develop in a geographically limited region.
A passage in Darwin’s Origin of Species indicates that Darwin viewed the cumulative changes that lead to speciation as acting slowly. However, Darwin indicates that “free intercrossing” retards speciation, which he describes as intermittent and affecting, “only a very few of the inhabitants of the same region at the same time.” [see Charles Darwin, Origin of Species 1st Edition 1859, p.153]
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli :
Therefore, it might reasonably be suggested that Eldredge and Gould described “phyletic gradualism” for the purpose of contrast with their own theory of punctuated equilibrium. (adapted from here.) | 1 Guide-Glossary
The modern synthesis
Table Mechanisms of Biological Evolution :
"The major tenets of the evolutionary synthesis, then, were that populations contain genetic variation that arises by random (ie. not adaptively directed) mutation and recombination; that populations evolve by changes in gene frequency brought about by random genetic drift, gene flow, and especially natural selection; that most adaptive genetic variants have individually slight phenotypic effects so that phenotypic changes are gradual (although some alleles with discrete effects may be advantageous, as in certain color polymorphisms); that diversification comes about by speciation, which normally entails the gradual evolution of reproductive isolation among populations; and that these processes, continued for sufficiently long, give rise to changes of such great magnitude as to warrant the designation of higher taxonomic levels (genera, families, and so forth)."- Futuyma, D.J. in Evolutionary Biology, Sinauer Associates, 1986; p.12 | 2 Guide-Glossary
Basic mechanisms of evolution
Overall,
Regulatory mechanisms that affect phenotype:
Constitutive gene regulation,
Alternative splicing,
Epigenetic mechanisms.
Mechanisms that add alleles:
Horizontal Gene Transfer,
Endosymbiotic Gene Transfer,
Mutation,
Recombination,
Gene flow,
Natural selection.
Mechanisms that remove alleles:
Natural selection,
Genetic drift,
Bottleneck,
Founder effect.
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli :
Genetic mutations are of interest to molecular geneticists because they cause disease and because they are the basic currency of biological evolution. Mutations that affect regulatory sequences are of particular significance to evolution because of their widespread phenotypic influence: '“pleiotropic” genes - those with multiple on-switches that enable the expression of a single gene in different tissues or at different stages of development. . . this pleiotropy gives evolution an artistic freedom to play with the regulatory elements in specific regions without making mutations that would affect the gene throughout the body. . . More generally, these kinds of molecular studies are enabling new advances in understanding the machinery of evolution. “These techniques are enabling dramatic progress in understanding the deep mechanics of evolution in more and more detail,” he said. “Researchers are now finding the actual `smoking guns' of evolution by documenting specific evolutionary changes at the DNA level. “And studies of phenomena such as fruitfly wing spots show how evolution is not some one-off process. It repeats itself over and over. They show that there is more than one way to tinker with the same gene, and by extension, to independently evolve the same trait,” Carroll said. ”' [HHMI news] [Abstract below]
Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila.
The gain, loss or modification of morphological traits is generally associated with changes in gene regulation during development. However, the molecular bases underlying these evolutionary changes have remained elusive. Here we identify one of the molecular mechanisms that contributes to the evolutionary gain of a male-specific wing pigmentation spot in Drosophila biarmipes, a species closely related to Drosophila melanogaster. We show that the evolution of this spot involved modifications of an ancestral cis-regulatory element of the yellow pigmentation gene. This element has gained multiple binding sites for transcription factors that are deeply conserved components of the regulatory landscape controlling wing development, including the selector protein Engrailed. The evolutionary stability of components of regulatory landscapes, which can be co-opted by chance mutations in cis-regulatory elements, might explain the repeated evolution of similar morphological patterns, such as wing pigmentation patterns in flies.
Gompel N, Prud'homme B, Wittkopp PJ, Kassner VA, Carroll SB. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature. 2005 Feb 3;433(7025):481-7. Comment in: Nature. 2005 Feb 3;433(7025):466-7.
Evolutionary developmental biology: how and why to spot fly wings. [Nature. 2005] PMID: 15690019
Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. [Nature. 2006] PMID: 16625197
Evolution of yellow gene regulation and pigmentation in Drosophila. [Curr Biol. 2002] PMID: 12372246
Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. [Development. 2005] PMID: 15753212
Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. [Cell. 2006] PMID: 16814723
See all Related Articles...
Creationists direct their attacks upon evolution at point mutations (SNPs) that affect coding for proteins, and in so doing they divert attention (either knowingly or out of ignorance*) toward mutations that are more likely to cause disease than to effect evolutionary changes.
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli :
* in the case of science-educated, professional (paid) proponents of creationism (idists & fodis), the explanation for this fallacious attack is probably a deliberate (fallacious) straw man argument, while the average internet debator (proid) appears to be ignorant of biological sciences and to be parroting the misinformation that abounds in creationist books and on creationist websites.
| 2 Guide-GlossarySpeciation
Allopatric speciation occurs when a geographical barrier sub-divides a parent species, resulting in geographic and reproductive isolation such that the descendent species can no longer interbreed upon removal of the barrier.
Anagenesis differs from cladogenesis in that one species progressively transforms into a replacement species when sufficient gene mutations fix in the descendant population. At this point, the ancestral species has become extinct. This mechanism is distinct from the increase in numbers of species generated by cladogenetic branching events.
Cladogenesis is the mechanism of speciation in which one or more lineages (clades) arise from an ancestral line. Such speciation events increase the variety of plants or animals through branching of the phylogenetic tree. Cladogenesis is differentiated from anagenesis, which is the in toto replacement of one species by an anatomically distinct species.
Peripatry (paripatry) is a subset of allopatry in which an isolated group has a smaller population than the parent group. Ernst Mayr introduced the term. Peripatric speciation occurs when the smaller sub-group of a species enters a novel niche within the range of the parent species, becoming geographically and reproductively isolated. Peripatric speciation (paripatric) is distinguished from allopatric speciation by the smaller size of the isolate group, and from sympatric speciation, which involves no barrier to breeding.
Sympatry involves no geographical separation of sub-populations of individuals. Sympatric speciation events occur most often in plants by the mechanism of polyploidy in which the number of chromosomes is doubled or tripled. John Maynard Smith proposed a model called disruptive speciation, in which homozygotes might have greater fitness than heterozygotes under some environmental conditions. | 0 Guide-Glossary
Genetic drift
However, random transmission (genetic drift) of alleles between generation is also an important factor in generating differences between parental and descendent gene pools. Random factors include the chance survival and meeting of parents (bottlenecks and the founder effect), the chance assortment of alleles at meiosis, and the chance survival of zygotes, seeds, or hatchlings.
Genetic drift is more important in small populations, because random effects are swamped by statistical averaging in large population. However, even large populations comprise numerous small interbreeding groups (demes). Evolution operates on demes.
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli : | 2 Guide-Glossary
Gene flow
The exchange of genetic material is brought about by movement of individual animals, gametes, or spores. Genes can flow both within and between species (horizontal gene transfer, antigenic shift, reassortment).
Table Mechanisms of Biological Evolution : Gene Regulation in E.coli : | 2 Guide-Glossary